
Journal of Nuclear Materials 351 (2006) 1–19

www.elsevier.com/locate/jnucmat
Ab initio modelling of defect properties with substitutional and
interstitials elements in steels and Zr alloys

Christophe Domain *
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Abstract

In alloys, the different elements interact with each other as well as with the various defects present: point defects or
extended defects (stacking faults, dislocations, grain boundaries). These interactions are responsible for the elementary
mechanisms governing the kinetics of the system, and they are among the key parameters to model the time evolution
of the microstructure, under ageing or irradiation. Indeed the microstructure properties are directly linked to the chemical
interactions between the different constituting elements, and these defects. Ab initio methods allow to determine properties
such as defect formation, binding or migration energies. These crucial quantities can shed light on the various mechanisms
involved in the evolution of the microstructure as well as be used as input for various models. In this article, data obtained
by ab initio calculation of point defects (vacancies and self-interstitial atoms, foreign interstitial defects (C, N, H and He) in
different matrix element (Fe and Zr) as well as of some substitutional elements (Cu, Ni, Mn, Si, Cr and P . . .)) in bcc Fe will
be presented and discussed. When available, comparison with experimental data will be made in order to assess the validity
of the results. The link between the obtained atomic quantities and the related consequences on the macroscopic properties
will be discussed.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the field of nuclear energy, the increase of the
lifetime and the improvement of the safety of the
installations are a technological and economical
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issue, in which the evolution of the properties of
structural materials is one of the key parameter.
The same questions have to be addressed also about
the materials that will be used in the next generation
of fission as well as fusion reactors.

The evolution of the materials properties under
severe conditions, such as radiation damage, is a
multiscale phenomenon, starting at the interaction
of the energetic particle with matter (at the piscosec-
ond and nanometre scales) which produces point
.
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defects and displacement cascades and leading up to
the component evolution (at the year/decade and
mascroscopic scales) with formation of large defects
or solute clusters and changes of the mechanical
properties. The understanding and the prediction
of the properties of the material evolution require
knowledge at the different scales involved to some-
how form a complete picture of what is happening.
From the modelling point of view, it implies the
linking and/or coupling of different codes based
on different techniques (ab initio, classical molecular
dynamics, kinetic Monte Carlo, mean field, disloca-
tion dynamics, finite elements).

In order to develop predictive tools, all the mech-
anisms intervening have to be included. The materi-
als used contain solute species in more or less dilute
proportions, around 1% in pressure vessel steels and
in cladding materials (Zr alloys), around 10% for
FeCr alloys and in larger proportion for austenitic
steels. The presence of interstitial elements such as
C, N or H also have important consequences on
the material properties even if their amount is low.

Multiscale modelling of materials is in progress
[1–3] and will contribute to the development of such
tools. A first tool devoted to radiation damage in
pressure vessel, ‘virtual test reactor’ has been devel-
oped within an international collaboration, called
REVE [4,5]. The construction of such tools gathered
on a same platform is under development within the
PERFECT European project devoted to pressure
vessel as well austenitic steels, including physics
and microstructure, mechanical as well as corrosion
modelling [6].

Some of the most important elementary mecha-
nisms involved in the modelling of the microstruc-
ture under irradiation are (i) the interactions
among defects (point defects and extended ones
such as dislocation or grain boundary) and between
defect and chemical elements present in the matrix;
(ii) the diffusion properties of point defects; (iii) the
dynamical features of these interactions. The irradi-
ation effects result from a synergy between the
defects produced and the chemistry of the matrix.
For instance, elastic interactions alone cannot
explain the behaviour of two interacting foreign
interstitial atoms [7], and in general, the classical
elastic theory does not apply at the atomic scale
or when chemical interactions are stronger than
elastic or volume effects.

Ab initio calculation is nowadays the state of the
art method to obtain insight and data on the ele-
mentary atomic mechanisms. These calculations
have involved most of the time ordered structures
and phase stability, and in a less extent the effect
of the presence of defects, from point defects up
to linear defects or planar defects. In order to simu-
late representative systems, the treatment of system
containing a few hundreds of atoms is/would be
required. Thus, the resolution and implementation
of the quantum mechanic theory has to be well opti-
mised. The calculation performed in solid state
physics and material science are based on the den-
sity functional theory (DFT), developed in the 60s
[8–10]. DFT is a very powerful quantum mechanics
method to study the electronic structure and proper-
ties of atoms in molecules and solids. With the
recent development of cheap and powerful proces-
sors, interconnected with high speed network to
form efficient massively parallel computers, the
number of applications of ab initio calculations is
increasing almost exponentially.

Let us just cite a few examples: in metallic mate-
rials, ab initio calculations have been widely used to
study the properties of simple metals, ordered com-
pounds such as intermetallics as well as carbides,
hydrides and nitrides. The electronic structure of
these materials has been studied in great length in
particular the magnetic effects in Fe alloys such as
Fe4N (c 0), FeNx (0.2 < x < 0.5) (e) Fe2N (n) and
Fe16N2 (a00) [11–14], or the Invar and magneto-
volume effects in FeNi ordered compounds [15].

Ab initio calculation in intermetallics have also
been coupled to cluster expansion methods to
obtain phase diagrams [16–20].

Point defects, as well as the effect of isolated substi-
tute or foreign interstitial atoms in a metallic matrix
have been much less studied. Most of the efforts so
far have concentrated on the isolated vacancy.

As regard the study of interfaces, some groups
have examined the problem of grain boundary seg-
regation, for instance in the case of phosphorus in
Fe [21–24]. However, because of the limited size of
the supercell, the grain boundary selected has to
have a short periodicity or to be a twin boundary.

In the field of plasticity, stacking fault energies,
as well as generalised stacking fault energies have
been calculated by ab initio in most of the pure met-
als. These data have been used in Peierls Nabarro
models to predict the core structure and spreading
of the dislocations. And only few works have con-
sidered direct calculation of the core structure of
screw dislocations in bcc [25] or hcp metal where lat-
tice friction is a key issue for the dislocation motion
at low temperature.
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Besides giving insight in the basic phenomena
involved in the microstructure evolution, the data
obtained by ab initio can be used as input data in
larger scale models such as kinetic Monte Carlo
models, as fitting properties in the building of
empirical potentials [26] as well as checkpoints for
the existing empirical potentials. The configurations
of the atoms around a defect can also be used in
higher scale models to help interpret experimental
results such as positron annihilation results [27,28].

This paper presents ab initio calculations applied
to metallic structural materials (pressure vessel
steels and cladding materials) used in nuclear
energy. The accessible quantities, the method and
the definition of the different physical quantities
are described in a first part. The results obtained
in bcc Fe and hcp Zr matrix which are host struc-
tures for ferritic steels and zirconium alloys are then
exposed. The different points discussed are the prop-
erties of intrinsic point defects, foreign interstitials,
solute atoms, as well as stacking faults and disloca-
tion core structure.

2. Electronic structure methods

In the field of materials science, two different
approximations which lead to two different theories
are behind ab initio calculations: the DFT and the
Hartree–Fock (HF) theories. The HF theory is
mainly used to treat molecular or cluster systems
and will not be discussed in this paper, while DFT
is more adapted for bulk or surface systems.

Ab initio calculations based on the density func-
tional theory [8,9] have now demonstrated their
capability to treat large enough number of atoms
for investigating a broad field of problems in mate-
rials science (e.g. see the review of Hafner [29]).

2.1. Ab initio methods

The DFT is devoted to the determination of the
electronic structure ground state. The fundament
statements are: (i) the total energy is a unique func-
tional of the electron density; (ii) the minimum
value of the total energy functional is the ground
state of the system [8]; (iii) the many-electron
Hamiltonian can be formally replaced by a set of
self-consistent one-electron Hamiltonians [9].

In order to solve these Kohn–Sham one-electron
equations, the wave-functions are represented by a
linear combination of a finite number of basis func-
tions, which have to be chosen in order to achieve
the optimal accuracy with the best computer effi-
ciency. One can define four classes of basis set: (i)
linear combinations of atomic orbitals (LCAO),
(ii) linearised augmented plane waves (LAPW),
(iii) linear combination of numerical orbitals (e.g.
SIESTA code), (iv) and plane waves (PW) with
pseudopotentials (e.g. VASP, PWSCF, ABINIT,
CASTEP, . . . codes).

The computational procedure described hereafter
concerns the last class with the use of ultrasoft
pseudopotential and plane wave basis set (see review
paper [30]), but some features such as the size of the
basis set or the sampling of the Brillouin zone are
also important issues for localised orbital scheme.

Regarding the calculation of magnetic systems,
such as ferritic materials, the standard methods
treat the spin up and spin down electronic density
with collinear spins. However non-collinear magne-
tism [31], which is much more complicated to
model, has also been taken into account and intro-
duced in the models to study pure phases for
instance bulk c-Fe [32], Cr [33] or Mn [34].

In the DFT, the exchange and correlation can be
described with different approximations. The most
simple one and most used one, the Local Density
Approximation (LDA), considers the exchange
and correlation energy to be the same as an homo-
geneous electron gas with the same density. Behind
LDA, the Generalized Gradient Approximation
(GGA) takes into account in addition the gradient
of the density.

The DFT provides usually very good results, but
has nevertheless some limitations. LDA and GGA
can lead to different results, for example, in Fe,
GGA predicts the right bcc ferromagnetic ground
state, whereas LDA predicts instead the hexagonal
non-magnetic structure as the most stable. Beside
these differences, the DFT within the LDA or
GGA are the most predictive for ground-state
properties and non-correlated electron systems.
For strongly correlated systems, encountered with
some rare earth elements (with localised f orbitals)
or some insulating transition-metal oxides (pre-
dicted metallic with the LDA, e.g. for NiO, UO2)
some refinement have been developed such as for
example the LDA + U [35] or self-interaction cor-
rection methods [36]. In addition, the DFT usually
does not do a very good job for the description of
the conduction band which is not well reproduced
compared to experiment and the gaps are usu-
ally underestimated. This leads to a bad description
of the excited states. Some methods have been
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developed to obtain the excited states: GW approx-
imation [37] provides for instance a very good band
structure for not too much correlated systems [38].

2.2. Physical properties and DFT limitations

The elementary physical properties are derived
from the energy (or the derivatives of the energy)
and the electronic structure of the system. Some of
the physical properties which can be obtained are:

• the structural parameters (lattice parameters and
relative co-ordinates),

• the structure stability (face centered cubic (fcc),
body centered cubic (bcc), hexagonal close
packed (hcp), . . .),

• the point defect configurations (e.g. the relative
stability of h110i and h111i self-interstitial con-
figurations in bcc, or the tetrahedral versus octa-
hedral configuration for foreign interstitials),

• the formation and binding energies (e.g. vacancy
formation energies, vacancy-solute binding
energies),

• the migration energies (vacancy or interstitial
migration energies), or more precisely the activa-
tion barriers for the defect to move from one site
to another,

• the vibrational properties (phonons),
• the elastic constants and the bulk modulus,
• the stacking fault energies,
• the density of states and band structure,
• the chemical bonding (e.g. the covalent or ionic

character),
• the magnetic properties (e.g. the ferro or anti-fer-

romagnetic configurations, the local magnetic
moments around a defect).

From the elementary properties different prob-
lems can be tackled.

In bulk, diffusion properties can be determined:
self-diffusion, solute or impurity atom diffusion, as
well as point defect diffusion. Indeed the diffusion
coefficients can be obtained from the calculation
of the activation barriers, and the vibrational modes
of the diffusive specie based on Vineyard theory [39].
The mobility of small defect clusters or mixed sol-
ute/foreign interstitial defect clusters is also an
important quantity which may be determined but
more complex to determine. In addition binding
energies between entities constituting these clusters
is in particular related to their lifetime and are there-
fore important to know.
The dislocation core structure and its deforma-
tion under stress can be obtained, despite the small
system size tractable. In addition, some insights on
the influence of impurities or foreign atoms on the
dislocation structure can be obtained trough the
evolution of the stacking fault energy.

Interfaces (grain boundaries, metal oxide inter-
faces if the lattice mismatch is small enough) cohe-
sion properties, as well as species segregation can
be evaluated. Surface properties such as, surface
relaxation and/or reconstruction, specie adsorption
or chemisorption, specie diffusion can also be
addressed.

The precise evaluation of the accuracy of the
energies obtained is rather difficult and depends on
the quantities calculated. For example, the error
on the lattice parameters is usually a few percent,
while the uncertainty on point defect binding ener-
gies in transition metals can be evaluated to be of
the order of 0.1 eV, but this depends on the
methodology.

2.3. Computational procedure

Our calculations have been performed using the
Vienna Ab initio Simulation Package VASP
[40,41]. The calculations were performed in a plane
wave basis, using fully non-local Vanderbilt-type
ultrasoft pseudopotentials (USPP) to describe the
electron-ion interaction [42,43]. Exchange and cor-
relation were described by the Perdew and Zunger
functional [36], adding non-local correction in the
form of the GGA of Perdew and Wang [44].
The ultrasoft pseudopotentials were taken from
the VASP library. In addition, when mentioned
specifically (for He in Fe, Cr and Ni specially), some
calculations were done using the Projector
Augmented Wave (PAW) approach [45,46].

The supercell approach with periodic boundary
conditions was used to simulate point defects as well
as pure phases. Brillouin zone sampling was per-
formed using the Monkhorst and Pack scheme
[47]. The ion relaxations were performed using the
standard conjugate gradient algorithm implemented
in the VASP code. Most of the calculations were
done at constant volume thus relaxing only the
atomic position in a supercell dimensioned with
the equilibrium lattice parameter for Fe or Zr. This
allows one to use a smaller plane wave energy cutoff
from 240 eV up to 350 eV depending on the impuri-
ties considered in our system (see Appendix A). The
relative error induced by this lower energy cutoff
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was checked to be negligible, as can be seen later in
text and in our previous work [48]. For some calcu-
lations, when specified, the volume has also been
relaxed in order to minimise the stress tensor. In
all the results presented here, the number of k points
is the total number of k points (not the number of
irreducible k points which depends on the supercell
symmetry). A discussion on the convergence of the
results with the number of k points can be found
in [48]. In all the tables presented below, the ‘num-
ber of atoms’ is more precisely the number of metal
sites in the perfect supercell, i.e. the cell without any
defects. Additional technical details can be found in
Appendix A.

The relaxation of the volume is converged when
the pressure or stress tensor on the supercell is zero,
as usually done in other literature ab initio calcula-
tions. For constant volume calculations, some
stresses remain on the supercell which can become
high for small supercells with point defects or point
defect clusters with a large formation volume. The
values obtained by these two methods should
bracket the correct answer. However the realistic
defect concentrations may be obtained by putting
one defect in an ‘infinite’ crystal (from our ab initio
supercell angle). At the surface of this crystal the
stress tensor is zero, whereas at the boundary of
our supercell the right stress (which is not zero) is
given by the elastic response of the crystal. This
stress defines the equilibrium volume of the super-
cell with the defect. Such method can be imple-
mented using Green’s functions and it has been
applied for dislocation core structure studies [49].
This method may give values in between the two
previous ones. However, for point defect properties,
(a)

(b)

A

B

+

A

B

Fig. 1. Point defect binding energy determination (a) direct c
constant volume and relaxed volume lead to energy
differences smaller or equal to other values from the
literature obtained with other codes and/or other
pseudopotentials as shown in this paper in para-
graph 3.1 hereafter.

2.4. Computational method and analysis

The binding energies between two entities in a bcc
iron or hcp zirconium matrix are calculated as
follows. The binding energy Eb(A1, A2) is defined
as the difference of two system energies E(non-inter-
act) and E(interact): Eb(A1, A2) = E(non-interact) �
E(interact).

In system ‘non-interact’, A1 and A2 do not inter-
act, i.e. they are situated far enough from each other
not to interact. In system ‘interact’, A1 and A2 inter-
act, and the distance between A1 and A2 may be first
nearest neighbour distance, second nearest distance
and so on (Fig. 1).

Because of the relatively small supercell sizes one
may use, it is rather difficult to make sure that the
two entities in system ‘non-interact’ do not interact
even when they are as far as the supercell size
allows. Another method can be used to determine
the binding energies which consists in subtracting
from the energy of system ‘interact’ (where A1 and
A2 interact), the energy of a system containing A1

(calculated with a supercell with a size similar to
that of system ‘interact’) as well as that of a system
containing A2 (obtained with similar conditions)
and that of the supercell with neither A1 nor A2

(Fig. 1).
For a supercell containing N atoms, the binding

energy is thus obtained as
A

B

+

A

B

alculation, (b) indirect calculation for small system size.



Fig. 2. Schematics of the supercell used to simulate screw
dislocation cores.
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EbðA1;A2Þ ¼ ½EðA1Þ þ EðA2Þ� � bEðA1 þ A2Þ þ Erefc;
ð1Þ

where Eref is the energy of the supercell without A1

and A2, E(A1) (respectively E(A2)) is the energy of
the supercell with A1 (respectively A2), E(A1 + A2)
is the energy of the cell containing both A1 and A2

interacting, i.e. the energy of system ‘interact’ in
the previous method. All the supercells contain the
same number of sites, i.e. have the same size.

For more than two interacting entities, Eq. (1)
can be generalised as follows:

EbðA1; . . . ;An2Þ ¼
X

i

EðAiÞ � ½EðA1 þ � � � þ AnÞ

þ ðn� 1ÞEref �. ð2Þ

For the solid solutions in a matrix of X element,
the heat of solution or formation enthalpy is calcu-
lated when the solute is in substitution

EforðsubÞ ¼ ½EððN � 1ÞX þ AÞ � ððN � 1Þ=NÞEref

� EðArefÞ�. ð3Þ

When the solute is in an interstitial position

EforðintÞ ¼ ½EðNX þ AÞ � Eref � EðArefÞ�; ð4Þ
where E((N � 1)X + A) is the energy of a supercell
containing (N � 1)X atoms and one solute atom
A, E(NX + A) is the energy of a supercell containing
NX atoms and one solute atom A, Eref is the energy
of a supercell containing NX atoms and E(Aref) is
the energy of solute A in the reference state chosen.

The electronic structure can be analysed using
the density of states as well as the electronic density
deformation map. For a supercell (AnXi) containing
nA atoms and iX atoms, the electronic density
deformation map due to the presence of atoms of
type X is obtained by subtracting from the elec-
tronic density of (AnXi) both the electronic density
of (An) and the electronic density contribution of
each isolated (Xk)

Dq ¼ qðAnX iÞ � qðAnÞ �
X

k¼1;i

qðX k isolatedÞ; ð5Þ

(An) is the supercell where all the X atoms have been
removed, and (Xk) is isolated in the same supercell.
In this scheme, isosurfaces of the deformation map
give a direct real space visualisation of the local elec-
tronic rearrangements due to the presence of the X

atom(s).
To calculate the excess stacking fault energy for a

given fault plane and a given vector, a rigid transla-
tion of two crystal blocks surrounding the fault
plane is applied. The atoms are relaxed only in the
direction perpendicular to the fault plane until the
forces are smaller than 0.02 eV/Å. Free surfaces
parallel to the fault plane and periodic boundary
conditions in the remaining directions were used in
order to investigate all possible fault planes and
translation vectors [50].

To simulate an hai screw dislocation in hcp, the
line is placed at the centre of a supercell containing
a stacking of two ð2�1�10Þ atomic planes. An initial
atomic displacement field derived from linear isotro-
pic elasticity is then applied. The atoms are then
relaxed except those located far from the line that
are kept fixed, surrounded by a vacuum ribbon
(see Fig. 2). A periodic boundary condition is
applied along the dislocation line. The relaxed dislo-
cation core is analysed using the arrow method
developed by Vitek [51].

3. Point defects

3.1. Intrinsic point defects

The intrinsic point defects (vacancies and self-
interstitials), can have different configurations
depending on the crystal structure. The relative sta-
bility of the self-interstitial configurations in a given
material is an important issue influencing their
mobility within the material and their ability to con-
tribute to the solute diffusion. To get accurate exper-
imental value of their formation and migration
energy is a very difficult task. The calculation of
the formation energies using ab initio calculations
constitute an important added value, as previously
only empirical potentials fitted on some equilibrium
properties were able to provide such data.



Table 1
Vacancy and self-interstitial formation energies in bcc Fe (in eV)

System System size Ef
vac O T h100i h110i h111i DEh1 1 1i�h1 1 0i

GGA VASP 54 at. Full rlx 1.95 4.37 3.41 4.11 0.7

GGA VASP 54 at. Cst vol 1.93 5.35 4.53 5.07 3.96 4.75 0.79

GGA VASP 128 at. Cst vol 2.02 4.46 5.04 3.94 4.66 0.72

GGA SIESTA [56] 128 at. Full rlx 2.07 4.94 4.26 4.64 3.64 4.34 0.70

EAM [61] 4.57 3.67 3.54 �0.13

FS [62] 6.03 5.66 – 4.87 5.00 0.13

EAM [26,90] 1.84 4.19 4.16 4.34 3.53 4.02 0.5

‘Full rlx’ indicates that the supercell is relaxed in order to get a null stress tensor, whereas ‘Cst vol’ means that only the atomic positions are
relaxed. O means octahedral position, T means tetrahedral position. The calculations done with 54 atom supercells by 125 k points and
those done with 128 atom supercells by 27 k points.
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The vacancy formation energy and other related
properties have been studied by ab initio in various
metals [52–55]. However, very few works have been
devoted to ab initio calculations of self-interstitials:
[48,56] in Fe, [57,58] in Zr, [59] in Mo and V.

We have examined some properties of the
vacancy and self-interstitial atom in a-Fe [48]. The
different defect energies for various configurations
are gathered in Table 1. The vacancy formation
energy was found to be 2.02 eV. The binding energy
between two vacancies is the largest when they are
in second nearest neighbour position. These first
principle calculations have confirmed that the self-
interstitial atom the most stable is a h110i dumbbell
in agreement with experiments. It was found that a
large formation energy difference of 0.7 eV exists
between the h110i and h111i configurations
(Eh1 1 0i

for ¼ 3:94 eV and Eh1 1 1i
for ¼ 4:66 eV). These

results confirm previous calculations of Johnson
[60], but they disagree with most of the embedded
atom method (EAM) empirical potentials [61,62].
In addition some recent ab initio calculations have
confirmed that the migration energy of the h110i
dumbbell is 0.3 eV [56] in agreement with experi-
mental measurements and with previous simulations
of Johnson [60]. Furthermore, in order to evaluate
the effect of the supercell size, the vacancy and
Table 2
Vacancy and dumbbell formation energies in bcc Fe (in eV)

System size (# unit cells) System size (# atoms) Ef
vac (ab initi

3 · 3 · 3 54 1.93
4 · 4 · 4 128 2.02
6 · 6 · 6 423
8 · 8 · 8 1024
10 · 10 · 10 2000

Effect of the supercell and evolution of the formation energy for large sy
[90].
dumbbell formation energies have been determined
for different system from 54 up to 2000 atoms at
constant volume to follow the same ab initio
method we have adopted (Table 2). If ones define
the error as the difference between 54 (resp. 128)
atom supercell calculation and large supercell, the
error is around 0.1–0.15 eV (resp. 0.05 eV) for inter-
stitial and 0.03 eV for vacancy.

The ab initio calculations of point defects in hcp
Zr, have also shown some differences compared to
the prediction of existing empirical potentials
[63,64] (Table 3). The vacancy formation energy
(1.86 eV) agrees with previous calculations made
using empirical potentials and with the available
experimental estimations. Concerning self-intersti-
tial atoms the octahedral configuration has the low-
est formation energy Ef

O ¼ 2:84 eV, but the basal
octahedral and the basal crowdion have formation
energy very close to Ef

O (2.88 and 2.95 eV, respec-
tively). Among the different interstitial configura-
tions, five different SIA configurations have
formation energies within 0.24 eV indicating possi-
ble polymorphism. Our ab initio results are in good
agreement with other GGA calculations [58].

In addition, the energy difference between con-
stant volume and fully relaxed configuration is
almost equal for most of the configurations to the
o) Ef
vac (EAM) Ef

h110i (ab initio) Ef
h110i (EAM)

1.729 3.96 3.646
1.723 3.94 3.557
1.720 3.533
1.717 3.527
1.713 3.524

stem size using the recent EAM potential derived by Ackland et al.



Table 3
Vacancy and self-interstitial formation energies in hcp Zr (in eV)

System size Vac O Bo Bc/Bs C S Bt

GGA 96 cst vol 1.86 2.94 2.98 3.09 3.25 3.12 4.14
GGA 96 full rlx 1.86 2.84 2.88 2.95 3.08 3.01 4.03
LDA [58] 36 2.73 2.97 3.23 3.18 2.95

96 2.79 2.78 2.90 3.07 2.80
GGA [58] 36 3.04 3.14 3.39 3.52 3.28
Emp. [63] 1.79 Bo 3.97 3.76 3.98 4.32 Bo
Emp. [64] 1.74 2.80 2.63 2.50 2.78 3.04 2.80

The calculations done with 96 atom supercells were sampled by 48 k points.
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elastic contribution to the relaxation energy [57],
and the energy difference represents about 0.1 eV
for 96 atom supercells.

The propensity of elementary point defects to
form vacancy or interstitial clusters is also impor-
tant under irradiation, and their properties in term
of stability and mobility play an important role in
the evolution of the system. The study of small
vacancy [65] and interstitial [66] clusters, and in
particular the determination of the binding energies
has also started in Fe despite the small supercell size
considered (indeed relaxation effects may become
important for large self-interstitial clusters).

The ab initio calculations of self-interstitials in Fe
and Zr has thus provided new figures and relative
stabilities. In the case of Fe, the use of these ab initio
data have allowed to build new empirical potentials
in Fe with self-interstitial properties in better agree-
ment with experimental data. Recently some new Fe
EAM potentials have been derived using our ab
initio interstitial formation energies which predict
correctly the stability of the h110i dumbbell [26].

For pure Fe, the ab initio data have been recently
used to simulate isochronal annealing by event
kinetic Monte Carlo [67] or the long term evolution
of neutron irradiation by object kinetic Monte
Carlo [68].
Table 4
Heat of solution Efor (Eqs. (3) and (4)) (eV) of and relaxation (in %
interstitial sites, in a substitutional configuration

Configuration C (54 at.) Dd1=d0
1 C (128 at.) N (54

Substitutional �8.742 �5.0 �8.094 �2.387
Tetrahedral �9.787 +13.7 �9.557 �4.407
Octahedral �10.710 +23.8 �10.459 �5.196
DE((T) � (O)) 0.923 0.902 0.789
Emig (eV) experimental 0.82 eV [72]–0.88 eV [79] 0.78 eV

The reference state is the isolated C and N atom, and the H2 molecule. C
3.2. Extrinsic point defects

Extrinsic point defect can be classified into for-
eign interstitial atoms which are atoms much smal-
ler than the host element and substitutional atoms.

3.2.1. Foreign interstitial defects

The foreign interstitials most commonly encoun-
tered are H, C, N, O in as received metals and He
under irradiation. Helium is a rare gas and has a
particular behaviour due to its filled shell.

Table 4 summarises the heats of solution deter-
mined using Eq. (3) when the impurity atoms (H,
C or N) are positioned in different possible configu-
rations in a bcc Fe matrix. In that case, the heats of
solution are relative to the reference state chosen:
the isolated C, N or H atoms. As expected, the
behaviour of these three elements is not similar.

For both C and N, the most stable position in the
a-Fe matrix is the octahedral (O) site in agreement
with the most common interpretation of the experi-
mental observations by internal friction, Mossbaüer
spectroscopy of FeC and FeN martensite [69] and
simulations by Johnson et al. [70] and Rosato [71]
using empirical potentials. Furthermore, for these
two elements, the tetragonal site is a saddle point
for the migration in a-Fe. Consequently, DE((T) �
of Dd1=d0
1Þ around a single C or N atom positioned in the two

at.) Dd1=d0
1 N (128 at.) H (54 at.) Dd1=d0

1

�4.3 �2.219
+11.9 �4.342 0.162 +4.6
+22.9 �5.107 0.308 +11.5

0.765 0.15
[72]–0.81 eV [105] 0.1–0.2 [74]

alculations made with 54 atom supercells sampled by 125 k points.
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(O)) is the C or N migration energy. The results
obtained in these calculations, reported in Table 4,
are in very good agreement with the experimental
data. More over, Weller [72] observed that upon irra-
diation of a-Fe, the interstitial carbon stays in solu-
tion to a somewhat higher temperature than
nitrogen. This fact is consistent with the migration
energy being higher for C than for N.

For H on the other hand, the tetrahedral config-
uration is the most stable configuration, in agree-
ment with the experimental data [73]. If one
assumes that the path of the H atom for diffusion
between two tetrahedral sites is less or equal to
the one through the octahedral site, then the migra-
tion energy for H is very low and less or equal to
0.15 eV in very good agreement with the experimen-
tal data gathered in Landolt and Börnstein [74]
which most of the time indicates a low migration
energy around 0.1 or 0.2 eV.

The diffusion coefficient can be directly calcu-
lated from the migration energies and from the
attempt frequencies. These frequencies are linked
to the dynamical matrix and to the vibrational
modes of the atoms which can be determined by
ab initio trough the Vineyard theory. As the deter-
mination of the whole dynamical matrix requires
numerous calculations, the calculations are
Table 5
FIA diffusion coefficient D0exp(�Ea/kT) determined from ab initio comp
in hcp Zr, and to literature ab initio calculations for C in Fe

Ab initio

C in Fe DFe
C ¼ 2:3� 10�7 exp 0:92

kT

� �
m2 s�1

DFe
C ¼ 1:44� 10�7 exp 0:86

kT

� �
m2 s�1 [76]

N in Fe DFe
N ¼ 0:94� 10�7 exp 0:79

kT

� �
m2 s�1

H in Zr DZr
H == ¼ 6:7� 10�7 exp � 0:40

kT

� �
m2 s�1

DZr
H ?¼ 4:1� 10�7 exp � 0:39

kT

� �
m2 s�1

Table 6
Vacancy – FIA binding energies (in eV) and distance to vacancy (in a0

Configuration EbC (eV) dC–V (a0) EbN

Vacancy 1st nn 0.44 0.40 0.67
Vacancy 2nd nn �0.09 0.64 0.14
Exp. results 0.41–1.1 (see text

for details)
0.365 [81] 0.14

The V-C binding energy (in first neighbour position) obtained with emp
Rosato [71]. Calculations made with 54 atom supercells sampled by 12
restricted to the vibrational mode of the migrating
species in the framework of the Einstein approxima-
tion. Using this method, we found that the diffusion
coefficient of C in bcc Fe [7], that of N in bcc Fe [7],
and that of H in Zr [75] are in close agreement with
the experimental measurements (Table 5). The C
diffusion coefficient is in agreement with Jiang and
Carter [76] ab initio calculations.

In addition, from previous works, the analysis of
the density of states of C and N in Fe [7] as well as
that of H in Zr [77], shows that the hybridisation
between the FIA valence electrons and the 3 d elec-
trons are localised a few eV below the Fermi level.

Table 6 summarises the binding energies of a C,
N or H atom in first and second nearest neighbour
position to a single vacancy. Our results indicate
that a foreign interstitial atom near a vacancy does
not become ‘substitutional’ and that the distance
between the FIA and vacancy does not vanish.
The data obtained here are in good agreement with
the experimental data available. For C, they are also
in agreement with the results obtained by Johnson
et al. [70] or Rosato [71] from empirical potentials.
One must stress out that the experimental results
are not always very clear and are extracted using
different techniques. On the one hand, Arndt and
Damask [78] find a binding energy of C with a
ared to experimental measurements for C and N in bcc Fe, and H

Exp.

D0 = 4.88–7.8 · 10�7 m2 s�1 [106]
Ea = 0.82 eV [72]
Ea = 0.88 eV [79]

D0 = 1.67–3.94 · 10�7 m2 s�1 [106]
Ea = 0.78 eV [72]
Ea = 0.81 eV [105]

DZr
H == ¼ 3:4� 10�8 expð� 0:42

kT Þ m2 s�1

DZr
H ?¼ 1:73� 10�7 exp � 0:39

kT

� �
m2 s�1 [107]

)

(eV) dN–V (a0) EbH (eV) dH–V (a0)

0.45 0.51 0.40
0.72

0.63 [73]

irical potentials are 0.41 eV for Johnson et al. [70] and 0.48 eV for
5 k points.
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defect of 0.41 eV which they interpret to be a
vacancy. However, some other experimental works
suggest interaction with interstitial clusters which
may correspond to some higher binding energies
1.1 eV by Takaki et al. [79] or 0.85 eV by Vehanen
et al. [80]. In addition, the C–V relaxed distance
obtained is in good agreement with the experimental
data [81].

This work indicates that the vacancy-FIA bind-
ing energy is indeed very high. As a consequence,
the formation of C-vacancy, N-vacancy or H-
vacancy complexes can explain the difficulty to
obtain coherent experimental data on vacancy
properties. Several FIA can be associated to a
vacancy. The total binding energy of a vacancy with
up to four FIA (C or N only) are given in Table 7.
Only the most stable configuration is presented for
each case. The different behaviour of C and N as
far as which configuration is the most stable in each
case is due to the interaction of the FIA with its Fe
neighbours as well as with its FIA neighbours.
Indeed the binding energies with the vacancy are
higher for C than for N, as the repulsion between
two C atoms is smaller for C than for N. In partic-
ular, the V-C2 configuration leads to the formation
of a C–C covalent bond which can be clearly
displayed by analysing the changes in the electronic
density. Indeed, the electronic deformation map in
the (100) plane containing the two FIA and
the vacancy shown Fig. 3 clearly underlines the
Table 7
Vacancy – FIA cluster binding energies (in eV)

Configuration V-2FIA

C

Eb (eV)

N

Eb (eV)

Calculations made with 54 atom supercells sampled by 125 k points.
different interaction involved when the FIAs are C
or N.

He is also a small atom, but because it is a rare
gas, its behaviour in metals is different from that
of C or N. Some elementary properties of He in dif-
ferent transition metals (Fe, Ni and Cr) have been
calculated and compared in Table 8.

Despite its size, He occupies preferentially the
substitutional position. The most favourable inter-
stitial configuration is the tetrahedral one, with a
low energy difference compared to the octahedral
site. The same behaviour is observed in several met-
als Fe, Cr and Ni. Our results are in agreement with
other recent ab initio calculations in Fe [82]. The
results presented in Table 8 represent a first step
towards the study of the interaction of He with
point defects and with other He atoms in FeCrNi
alloys to model swelling of austenitic steels.

In addition, under irradiation with He produc-
tion, the He formed can be trapped by the vacancies
present in the matrix and lead to the formation of
He bubbles [83,84]. Our ab initio calculations, in
agreement with results obtained with an empirical
potential, show that several He atoms can be
trapped per vacancy [85].

3.2.2. Substitutional atoms: interactions with

vacancies
Different atomic species (Cu, Ni, Mn, Cr, Si, P,

W and Mo) which can be found in ferritic steels
V-3FIA V-4FIA



Table 8
He relative stability (in eV) in Fe, Cr and Ni

Fe bcc Cr bcc (NM) Ni fcc

He subs 0 0 0
He (O) 0.57 0.43 1.39
He (T) 0.36 0.23 1.27
Efor (SIA) 4.10 5.65 4.80

Calculations made with 54 atom (for Fe and Cr) and 32 atom (for
Ni) supercells sampled by 125 k points.

Fig. 3. Electronic density charge deformation map. The red color indicates an increase of the electronic density, the blue color a decrease
of the electronic density. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this
article.)
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have been studied. Because of their size, they are in
substitution in the Fe matrix. Among them, Cu, Ni,
Mn, Cr have a size rather similar to that of the
atoms of the host matrix, whereas Si, P are under-
Table 9
Heat of solution Efor (Eq. (3)) (in eV) and relaxation of the three first n
distance)

Configuration Cu Ni

DH (eV) 0.55 �0.22
First nearest neighbour 0.92 0.20
Second nearest neighbour �0.23 �0.13
Third nearest neighbour �0.13 0.09

The reference state for the solute is its ground state bulk phase (i.e. fcc
reference state is the isolated atom. Calculations made with 54 atom su
sized solutes and W and Mo are oversized. The
interaction with point defects such as vacancies will
depend on the relative size of the solute atom com-
pared to Fe as well as on the chemical interactions,
which should be predominant when the sizes are
similar.

We have extensively studied solid solutions of
those of the solute atoms Cu, Ni, Mn, Si and P
[86–88] which are supposed to influence the embrit-
tlement under irradiation of the pressure vessel
steels. The other solutes have been, for the time
being, less investigated. In our calculations, the
creation of this so-called ‘solid solution’ consists in
substituting one Fe atom by a solute atom in a 54
atom supercell (sometimes 128 atom supercell).
eighbour shells around the solute atom (in % of the non-relaxed

Mn Si Cr P

�0.14 �1.12 �0.35 �4.53
0.43 �0.19 �0.23 �0.9
�0.26 �0.71 0.06 �0.03
�0.02 0.05 0.04 �0.2

Cu, bcc Cr, fcc Ni, bcc Mn, diamond Si) except for P where the
percells sampled by 125 k points.
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The heat of solution Efor (Eq. (3)) and the relaxation
of the first and second nearest Fe atoms surround-
ing the solute atoms are presented Table 9. As
expected from the experimental phase diagrams,
Cu has a positive heat of solution (or solution
enthalpy), whereas Efor is negative for Ni, Mn, Si,
Cr and P. The values obtained in Table 9 are in
agreement with the solute solubility limit trends:
the solubility limit of Cu in a-Fe is very low,
whereas Si, Ni, Cr, Mn and P have a rather high
solubility limit [86].

Interactions between a solute atom and a
vacancy (in a first and second nearest neighbour
position) have been determined. The binding energy
values obtained using Eq. (1) are reported in Table
10. Cu, Si and P have a positive binding energy in
Table 10
Solute vacancy interaction in bcc Fe. Solute migration energy
(in eV)

Element Emig Eb V–X
(1 nn)

Eb V–X
(2 nn)

Eb (Exp.)

Fe 0.65 � �
Si 0.44 0.23 0.15 0.21 [89]
P 0.34 0.31 0.26
V 0.57 0.03 �0.10
Cr 0.58 0.03 0.00 } [89]
Mn 1.02 0.09 �0.08 } [89]
Co 0.72 �0.06 0.10
Ni 0.70 0.03 0.19 0.21 [89]
Cu 0.56 0.17 0.21 0.11 [89]

0.14 [108]
Mo 0.57 0.08 �0.20
W 0.79 0.06 �0.17
Au 0.76 0.33 0.19

Vacancy-solute binding energy in first (1nn) and second (2nn)
nearest neighbour position (in eV). Calculations made with 54
atom supercells sampled by 125 k points. A } sign in the
experimental binding energy indicates that it is less than 100 meV
according to Möslang and coworkers [89].

Table 11
P occupation site in bcc Fe

EAM [90] Ab initio [90] 16 ato

Substitution 0 0
Tetrahedral 2.8 4.35
Octahedral 3.47
Mixed h100i Decays to mixed h110i 4.75
Mixed h110i 2.57 3.82
Mixed h111i 3.30 4.36

The reference state for the energies (in eV) are the substitutional positi
supercells were sampled with 343 k points, those done with 54 atom sup
27 k points. Our results are compared to ab initio (with 16 atoms) and
[90].
first and second nearest neighbour position, while
Ni is positively bound to the vacancy in second
nearest position only. No significant tendency is
obtained for Mn, whereas Cr does not seem to inter-
act with the vacancy. These results are in very good
agreement with the muon spin rotation experiments
of Möslang et al. [89] who observe an important
binding between the vacancy and Cu, Ni or Si,
and no binding energy or a binding energy below
the experimental resolution of the vacancy with
Mn and Cr. For big oversize solutes such as Mo,
W or Au, the interactions are large but are necessar-
ily attractive. For Mo and W, in second nearest
neighbour position, the repulsion is large. The elec-
tronic structure effects seem thus to be significant.

These interactions and binding energies can be
used to build simple cohesive model to define an
Hamiltonian for a multi-component alloy. This
kind of data have been used to parameterise ana-
tomic kinetic Monte Carlo aiming at simulating
the evolution of solute atoms in bcc Fe in presence
of vacancies [87].

3.2.3. Substitutional atoms: interactions with

self-interstitial atoms

P in Fe and Nb in Zr are both substitutional sol-
ute, but they have a size significantly smaller than
the atom of their host matrix. Their interaction with
self-interstitial atoms can thus be potentially signif-
icant because of size as well as chemical effects.

For phosphorus, among the different possible
configurations, it was found that the most stable
configuration is the mixed h110i dumbbell with a
formation energy of 2.92 eV (using Eq. (4)) (Table
11). The ab initio data of Table 11 are in good
agreement with those obtained with a recently
developed EAM potential based on ab initio calcu-
lations [90]. The almost 3 eV energy difference
ms 16 atoms 54 atoms 128 atoms

0 0 0
4.35 3.24 –
4.75 3.13 2.97

Decays to (O) Decays to (O)
3.83 2.98 2.92
4.35 3.40 3.25

on for P and bcc Fe for Fe. The calculations done with 16 atom
ercells by 125 k points and those done with 128 atom supercells by
EAM calculations (with 2000 atoms) obtained by Ackland et al.



Table 13
SIA – P binding energies (in eV) in bcc Fe

1.02 eV

0.83 eV

�0.35 eV
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between the substitutional position and the mixed
dumbbell induces a binding energy between a P in
substitution and a h1 10i Fe dumbbell close to
1 eV as the formation energy of the h110i Fe dumb-
bell Eh1 1 0i

for equals 3.94 eV (Table 12). One can notice
that the binding energy of the mixed dumbbell is
almost independent of the supercell size, and 16
atom supercell calculations [90] already lead to
1.00 eV. This small dependence of these relative val-
ues with the supercell size can be understood by the
similar number of atoms and stress on the different
supercells used to get this binding energy. Thus,
when a self-interstitial comes close to a substitu-
tional P, a mixed dumbbell is easily formed. Conse-
quently, the trapping of self-interstitials by P and/or
P transport by interstitial mechanism appears to be
possible. In addition, P positioned in first nearest
neighbour to the dumbbell leads also to a strong
binding energy in the site in compression, whereas
the site in tension is unfavourable (Table 13).

For Niobium, the most stable interstitial configu-
ration is (O). The energy difference between substi-
tutional and interstitial position is 2.15 eV, which
is 0.68 eV lower than the self-interstitial formation
energy (for a 36 atom supercell) and leads to a bind-
ing energy between a Nb and a SIA of 0.68 eV
(Table 12). This high binding energy is in agreement
with the small size of Nb as compared to Zr: the
atomic volume of hcp Zr is 23.4 Å3, whereas the
one of bcc Nb (resp. hcp Nb) is 19.4 Å3 (resp.
19.0 Å3).

To summarise, both P in Fe and Nb in Zr
strongly interact with self-interstitials, the interac-
tion energy is around 0.6–1 eV. Despite the difficulty
to separate the elastic contribution due to size effect
Table 12
Solute-SIA interaction energies (eV): P in bcc Fe and Nb in hcp
Zr

P in Fe [90]
(16 atom
supercell)

P in Fe Nb in Zr

Efor (X subs) 0 0 0.61
Efor (X interstitial) 3.82 2.98 2.76
Eb (X/FIA) 1.00 0.96 0.68

The reference state is the substitutional position for P and the
bulk bcc for Nb. The formation energy of the h110i self-inter-
stitial atom in Fe is 3.94 eV. The formation energy of the (O) self-
interstitial atom in Zr is 2.84 eV. The energies are given in eV.
Calculations made with 54 atom (resp. 36 atom) supercells sam-
pled by 125 k points (resp. 96 k points) for Fe (resp. Zr). By
ab initio calculation on 16 atom supercell at constant volume,
Ackland et al. [89] obtained 4.82 eV for the dumbbell formation
energy.

The P atom is the black circle. The local magnetic moment on the
nearest neighbour atoms is in bold and the distance in Å. Cal-
culations made with 54 atom supercells sampled by 125 k points.
The reference state is the substitutional position for P and the
h110i Fe self-interstitial atom.
and the chemical interaction, such large values indi-
cate that the size effect is rather significant. Under
irradiation, as soon as a self-interstitial atom in Fe
or Zr migrates close to a P or Nb substituted atom,
the P or Nb will move to an interstitial configura-
tion. The possible diffusion of these defects is under
study.
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4. Extended defects

4.1. Stacking faults

We have studied stacking faults and generalised
stacking faults in Zr, and to a less extent in Ti. In
addition, we have also evaluated the influence of
chemical impurities such as H on the stacking fault
energy in Zr. Stacking fault energies represent useful
data related to the preferential planes for disloca-
tion core dissociation. They are easier to calculate
than the core structure itself. In the case of hcp Zr
and Ti, most of the empirical potentials predict a
lower basal stacking fault energy compared to the
prismatic one. This is in disagreement with the
experimentally known screw dislocation motion
which takes place in prismatic planes. Only the tight
binding (TB) calculation of Legrand [91] gave a
lower prismatic stacking fault energy.

The calculated values of the basal and prismatic
stacking fault excess energies (Table 14) are in qual-
itative agreement with the tight binding calcula-
tions, the basal stacking fault energy (Zr: 200 mJ/
m2, Ti: 291 mJ/m2) being larger than the prismatic
one (Zr: 145 mJ/m2, Ti: 174 mJ/m2). Atomic relax-
ations are essential to obtain the cpris value while
their effect is less pronounced to obtain cbas (they
account for only 15% of the value). In addition,
we have observed [92] that Zr or Ti pseudopoten-
tials with semi-core p electrons leads to similar
results for stacking fault energies (within 10% and
20% for basal and prismatic faults respectively)
and elastic constants.

Our results are in agreement with the only avail-
able experimental value of 150 mJ/m2 evaluated for
Ti [93] for the stacking fault energy. Assuming a dis-
location core dissociation in two partials, the previ-
ous results entail a preferential prismatic spreading.

Beside the stable stacking fault energy, we calcu-
lated the gamma-surface excess energy path along
Table 14
Zr and Ti excess stacking fault energies, shear elastic constants and Le

cbas (mJ/m2) cprism (mJ/m2)

Zr Ab initio GGA 200 (237) 145 (455)
TB [91] 340 150
Exp. – –

Ti Ab initio GGA 291 174
TB [91] 290 110
Exp. – 150 [93]

In parenthesis values of the stacking fault energy without atomic relax
the Burgers vectors hai for the prismatic, basal
and pyramidal p1 planes (Fig. 4). For both Ti and
Zr, the profile corresponding to the prismatic plane
has a local minimum for a translation vector of hai/
2, which corresponds to the stable prismatic fault
configuration. This minimum is obtained neither
by existing empirical potentials (Ti [94]) nor by the
TB model used by Legrand [91] or that of Girshick
et al. [94].

The excess energy profile along the hc + ai Bur-
gers vector for the p1 and p2 pyramidal planes look
both similar [92] with much higher energy profiles.
Both profiles have a local minimum close to
hc + ai/2, the excess energy being nevertheless high
enough (400–500 mJ/m2) to prevent from a signifi-
cant dislocation core dissociation.

The hydrogen influence on dislocation mobility
has been investigated in an indirect way, by placing
H atoms at the stacking fault plane using different
coverage ratios [50]. For both Zr and Ti, in basal
and prismatic fault planes, the presence of H
induces a significant fault energy decrease (see Table
15) enhanced by the H coverage. In some cases, the
stacking fault energy may become negative, a result
that has been associated to the existence of hydrides
with high formation enthalpy [50]. Since the screw
dislocation core may be seen as an ‘incipient’ pris-
matic fault, it is likely that H atoms should segre-
gate to the dislocation core (in this case the
driving force is purely chemical since there is no first
order elastic interaction between screw dislocations
and H atoms). Due to the H-induced stacking fault
energy reduction the prismatic spreading will
increase leading to an enhanced planar glide.

4.2. Dislocation core structure

There are two approaches to determine the dislo-
cation core structure from ab initio calculation. The
first one is based on the Peierls Nabarro model, and
grand ratio [91]

C44 (GPa) C66 (GPa) R

29 39 1.9
42 42 2.3
36.3 44 Prismatic

43 45 1.8
45 43 2.5
46.7 35 Prismatic

ations.



Fig. 4. Gamma-surface excess energy (in mJ/m2) profile along hai
in the basal, prismatic and pyramidal p1 slip planes for Zr and Ti.
The relaxation of the distance between the atomic planes
surrounding the fault plane (in Å) is plotted in Zr for the basal
and prismatic planes.

Table 15
Effect of hydrogen on basal and prismatic stacking fault energy in
Zr and Ti (in mJ/m2)

Coverage, H Basal plane Prismatic plane

Zr Ti Zr Ti

0 200 291 145 174
0.25 80 102 73 72
0.5 �60 �105 67 66
1 �14 �54 �90 �190

The coverage ratio H is the ratio between occupied and available
number of tetrahedral sites in between the atomic planes sur-
rounding the fault plane before the fault vector is applied.
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the core spreading is obtained solving equation sets
with the generalised stacking fault energy deter-
mined by ab initio calculations. The core structure
in several transition metals (e.g. Ni3Al [95], Al and
Ag [96]) and semiconductors (e.g. Si [97]) have been
predicted. The second approach is the direct relaxa-
tion of the core, which is necessary for non-planar
core for which the core structure is more complex.
Such complex cores are found for screw dislocation
in bcc and hcp metals. In these metals, the core
structure of screw dislocation is a key issue related
to the dislocation mobility and plasticity at low tem-
perature [98,99].

The direct core structure of h111i screw disloca-
tion in bcc transition metals have been determined
for Fe [100], Mo [100–103], Ta [101–103]. The ab ini-
tio calculations predict a core structure less spread
than the one obtained with empirical potentials by
molecular dynamics. For Mo and Fe, Frederiksen
and Jacobsen [100] have found that the screw dislo-
cation cores are symmetric with respect to 180�
rotations around an axis perpendicular to the dislo-
cation line. In hcp metals such as Ti or Zr, the
spreading of the screw dislocation core is also a
key issue and has been only calculated by ab initio
on small system for Zr [104].

We have determined the core structure of the hai
screw dislocation for Ti and Zr using supercell up to
61 and 127 atoms. Whatever the cell simulation size
(61 or 127 atoms) [92], both Zr and Ti present
similar trends: the core has a marked prismatic
spreading with screw character while a secondary
spreading with and edge component is observed
along the basal planes (Figs. 5 and 6).

Starting from the geometrical configuration, the
fully relaxed structure depicted in Figs. 5 and 6 is
obtained only if the atoms are allowed to move
along and perpendicularly to the dislocation line.
The sole relaxation parallel to the line does not
entail significant modifications with respect to the
geometric configuration. This fact illustrates the
importance of the edge character atomic relaxation
to obtain a correct core structure. As illustrated by
Fig. 5, the strongest edge relaxation component is
parallel to the c-axis.



Fig. 5. Zr screw dislocation core, screw component (on the right) and edge component (on the left) of the displacement (127 atoms). The
empty and filled circles allow to distinguish the initial two different atomic planes.

Fig. 6. Screw dislocation core of Zr and Ti (screw component of the displacement, 127 atoms).
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These trends are almost independent on the cell
size for cells containing between 61 and 127 atoms.
The prismatic spreading, of the order of 3 c, is quite
well converged even using a 61-atom supercell. The
secondary basal spreading, smaller than the primary
prismatic one, seems to be long-range as shown by
Fig. 6 obtained using the larger cells. It is important
to point out that the previously mentioned discrep-
ancies between atomic scale potentials concerning
the atomic relaxations around the prismatic fault
may induce significant differences in the secondary
spreading, modifying not only the core structure
but also the dislocation mobility.

5. Conclusions

Ab initio calculations can provide a large set of
configurations and energies at the atomic scale.
These information can allow to define some elemen-
tary physical phenomenon: point defect formation
energies, defect-solute binding energies, stacking
fault energies, dislocation core structure.

These ab initio have confirmed or gave insights
for the following mechanisms:

The h110i self-interstitial in bcc Fe is the most
stable configuration. The self-interstitial energy for-
mation in hcp Zr are low and close together.

C and N are bounded to vacancy, and the forma-
tion of 2FIAs – vacancy complexes lead to very sta-
ble structure, with formation of covalent bond for C.

As a rare gas, He prefer substitutional position,
and tetrahedral configuration is the most stable
interstitial position with similar behaviour in Fe,
Cr and Ni.

In bcc Fe, solute atom interactions with vacancy
is not straight forward link to elastic interaction due
to solute size effect, but chemical interactions seem
to play an important role. P in bcc Fe and Nb in
Zr have both a strong interaction with self-intersti-
tial atoms which may have effects under irradiation.



a (Å) c (Å) c/a

Zr 3.239 5.163 1.594
Zr exp 3.232 5.149 1.593
Ti 2.940 4.672 1.589
Ti exp 2.95 4.68 1.586

System Cut-off energy (eV)

Fe with all elements
except C and He

240

Fe with C 290
Fe with He 350 and 400
Zr 240
Cr–He 400
Ni–He 400
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A low prismatic stacking fault energy is obtained
for hcp Zr and Ti compared to the basal stacking
fault. In addition, the core structure of hai screw dis-
location in Zr and Ti are similar and present a pris-
matic spreading with some secondary spreadings in
the basal plane. The results are in agreement with
the experimentally known motion of screw disloca-
tion in the prismatic plane for these metals. In addi-
tion, hydrogen tends to reduce the stacking fault
energies.

The ab initio data can be used to developed cohe-
sive model for the upper scale within the multiscale
modelling approach: (i) to fit empirical potentials
for short time scale kinetic (molecular dynamics
simulations); (ii) to get energetic models for medium
term kinetic evolution (atomic Monte Carlo); (iii) to
get binding energies and defect mobilities for long
term kinetic and evolution (object or event kinetic
Monte Carlo, cluster dynamics); (iv) to get segrega-
tion energies for segregation kinetic models (mean
field approaches); (v) to get information on the dis-
location behaviour (dislocation dynamics, through
molecular dynamics).

Improved inputs from ab initio calculations
should be obtained by the use of larger supercells
for cluster defects or extended defects.

Another way of improvement is the amelioration
of the ab initio calculation with a better treatment
of the magnetism, by doing non-collinear calcula-
tions. This treatment requires larger computing
resources, but may lead to more predictive values
in cases such as Mn in Fe, or fcc Fe (for austenitic
steels modelling), for which the magnetism is known
to be complex.

The determination of the activation barriers for
the defect migration is a vast subject that still need
to be explored in more details in order to improve
the kinetic predictions of upper scale methods such
as kinetic Monte Carlo or rate theory.
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Appendix A. Calculation technical details

This appendix contains the conditions of our
simulations and the equilibrium bulk properties of
Fe, Zr and Ti.

The equilibrium lattice parameter for Fe used
with USPP is 2.8544 Å.

The equilibrium lattice parameters of hexagonal
Zr and Ti are given below.
The different plane wave energy cut-offs used are
summarised in the table below.
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[45] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953.
[46] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
[47] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188, In
the original Monkhorst and Pack scheme, the k point mesh
is always symmetric around the C point, whereas very often
in our calculations we adopted grids centred at the C point.

[48] C. Domain, C.S. Becquart, Phys. Rev B 65 (2002) 024103.
[49] S. Rao, C. Hernandez, J.P. Simmons, T.A. Parthasarathy,

C. Woodward, Philos. Mag. A 77 (1998) 231.
[50] C. Domain, A. Legris, R. Besson, Acta Mater. 52 (2004)

1495.
[51] V. Vitek, R.C. Perrin, D.K. Bowen, Philos. Mag 21 (1970)

1049.
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